Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning

نویسندگان

  • Gregory S. Ledva
  • Laura Balzano
  • Johanna L. Mathieu
چکیده

Though distribution system operators have been adding more sensors to their networks, they still often lack an accurate real-time picture of the behavior of distributed energy resources such as demand responsive electric loads and residential solar generation. Such information could improve system reliability, economic efficiency, and environmental impact. Rather than installing additional, costly sensing and communication infrastructure to obtain additional real-time information, it may be possible to use existing sensing capabilities and leverage knowledge about the system to reduce the need for new infrastructure. In this paper, we disaggregate a distribution feeder’s demand measurements into two components: 1) the demand of a population of air conditioners, and 2) the demand of the remaining loads connected to the feeder. We use an online learning algorithm, Dynamic Fixed Share (DFS), that uses the real-time distribution feeder measurements as well as models generated from historical buildingand device-level data. We develop two implementations of the algorithm and conduct simulations using real demand data from households and commercial buildings to investigate the effectiveness of the algorithm. Case studies demonstrate that DFS can effectively perform online disaggregation and the choice and construction of models included in the algorithm affects its accuracy, which is comparable to that of a set of Kalman filters. Index Terms Online learning, machine learning, energy disaggregation, output feedback, real-time filtering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Energy Consumption in Mobile Cloud Computing by ‎Classification of Demands and Executing in Different Data Centers

 In recent years, mobile networks have faced with the increase of traffic demand. By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. Data Centers (DCs) are connected to each other by high-speed links in order to minimize delay and energy consumption. By considering a ...

متن کامل

A New Real-Time Pricing Scheme Considering Smart Building Energy Management System

Real-time pricing schemes make the customers to feel the energy price volatility and improve their load profiles. However, these schemes have no significant effect on demand-side uncertainty reduction. In this paper, considering smart grid infrastructures and smart building Energy Management System (EMS), a new real-time pricing scheme is presented to reduce the uncertainty of demand-side. In t...

متن کامل

Integrated Scheduling of Electric Vehicles and Demand Response Programs in a Smart Microgrid

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will be result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response (DR) programs is proposed. In the ...

متن کامل

Real -Time Pricing Design Considering Uncertainty of Renewable Energy Resources and Thermal Loads in Smart Grids

In this paper, a novel real time pricing design is presented for Demand Response (DR) programs. A Load Serving Entity (LSE) is responsible to provide energy for flexible loads, inflexible loads and thermal loads. The LSE consider operation conditions of system and uncertainty of renewable energy resources and it designs a Real Time Price (RTP) demand response. The inflexible and thermal loads c...

متن کامل

Optimal Operation of Integrated Energy Systems Considering Demand Response Program

This study presents an optimal framework for the operation of integrated energy systems using demand response programs. The main goal of integrated energy systems is to optimally supply various demands using different energy carriers such as electricity, heating, and cooling. Considering the power market price, this work investigates the effects of multiple energy storage devices and demand res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017